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A study of the morphology of the vortical skeleton behind a flapping NACA0030 wing
with a finite aspect ratio of 3, is undertaken. The motivation for this work originates
with the proposal that thrust can be efficiently produced by flapping aerofoils. The
test condition corresponds to a Strouhal number of 0.35, Reynolds number, based on
aerofoil chord, of 600 and an amplitude of flapping, equal to the chord length of the
wing. This test condition corresponds to the optimal thrust-producing case in infinite-
span flapping wings. This study investigates the effect of wing three-dimensionality on
the structure of the wake-flow. This is accomplished here, by quantitatively describing
the spatio-temporal variations in the velocity, vorticity and Reynolds stresses for the
finite-span-wing case.

Preliminary flow visualizations suggest that the presence of wingtip vortices for
the three-dimensional-wing case, create a different vortical structure to the two-
dimensional-wing case. In the case of a two-dimensional-wing, the flow is characterized
by the interaction of leading- and trailing-edge vorticity, resulting in the formation
of a clear reverse Kármán vortex street at the selected test condition. In the case of
a three-dimensional-wing, the flow exhibits a high degree of complexity and three-
dimensionality, particularly in the midspan region. Using phase-averaged particle
image velocimetry measurements of the forced oscillatory flow, a quantitative analysis
in the plane of symmetry of the flapping aerofoil was undertaken. Using a triple
decomposition of the measured velocities, the morphological characteristics of the
spanwise vorticity is found to be phase correlated with the aerofoil kinematics.
Reynolds stresses in the direction of oscillation are the dominant dissipative
mechanism. The mean velocity profiles resemble a jet, indicative of thrust production.
Pairs of strong counter-rotating vortices from the leading- and trailing-edge of the
aerofoil are shed into the flow at each half-cycle. The large-scale structure of the flow
is characterized by constructive merging of spanwise vorticity. The midspan region is
populated by cross-sections of interconnected vortex rings.

1. Introduction
1.1. Biomimesis

As the priorities of ecology and economy change, so does the need for scientists to
find alternative and more efficient means of transport. To this end, scientists have
looked to nature for alternative and unconventional methods of propulsion.

The ability of some animal species to propel themselves efficiently, has created fur-
ther interest in understanding the locomotive aspects of their propulsion. Cetaceans,
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birds and insects share a common mechanism of propulsion, namely, the flapping
motion of their lift-generating wings. DeLaurier & Harris (1982) explains that the
optimal propulsive efficiency with which some species, such as sharks, are able to
propel themselves, compared to their apparent lack of hydrodynamic efficiency has
led to Gray’s paradox. Nonetheless, the improvements in measurement techniques
are providing opportunities to further understand, and use naturally occurring
technology.

We investigate a particular adaptation of biomimesis. Biomimesis is the use of
naturally occurring technology in modern engineering applications. Of specific interest,
is the production of thrust by flapping wings. This propulsive technique is efficiently
employed by species of cetaceans, insects and bird. According to Triantafyllou et al.
(2000), the combination of heave and pitch oscillations in carrangiform motion, which
is employed by some cetaceous creatures is highly evolved and efficient. Observations
of this kind coupled with the potential for application of this technology has resulted
in many hydrodynamic studies and has also enhanced our understanding of the many
aspects of animal locomotion (Drucker & Lauder 1999). Nonetheless, our ability to
apply this technology efficiently is still at its infancy.

1.2. Flapping wings

Knoller (1909) and Betz (1912) were among the first to investigate experimentally the
effect of an aerofoil pitch oscillation on the free-stream flow. These studies determined
that the oscillation induced an angle of attack such that the lift vector tilted in the
free-stream direction, contributing to the thrust force.

Freymuth (1988) and Koochesfahani (1989) studied quantitatively and qualitatively,
the flow patterns behind infinite-span aerofoils performing pure pitch oscillations.
Koochesfahani (1989) presented some flow visualizations of a reverse Kármán vortex
street under certain conditions defined by the dimensionless Strouhal number. In
the Strouhal range of 0 � St � 5, the reverse Kármán vortex street suggested velocity
addition to the flow, producing thrust. Simultaneously, numerical methods have been
used to determine the accuracy of various theoretical flow models in predicting the
properties of the flow, including the thrust. Katz & Weihz (1978) used a panel method
to study the effects of various flapping motions on thrust. Garrick (1936) applied
an inviscid, unsteady, thin aerofoil theory to a two-dimensional aerofoil and found
that this was unsuitable for simulating the flow mechanics behind pitching aerofoils.
Another study by Tuncer, Walz & Platzer (1998) identified parameters that influenced
dynamic stall. Their study, like most others, focuses primarily on parametrically
measuring the unsteady effects of oscillating aerofoils including aero-elastic flutter,
rather than investigating the flow physics that cause them.

Investigations into heaving aerofoil flows have also provided valuable information
on the flow physics related to flapping wings. Jones, Dohring & Platzer (1996) and
Platzer (2001) provided a comprehensive experimental and numerical analysis, on the
thrust-producing ability of infinite-span pure heaving aerofoils. The reduced frequency,
k = ωc/2U∞, was used as the principal parameter to predict thrust production in
heaving aerofoils. Jones et al. (1996) parametrically investigated the effect of other
motion parameters and found that heave amplitude and oscillation frequency were
important for the production of efficient thrust.

It is assumed that creatures that flap their wings to propel themselves, do so with
optimal efficiency. The motion can be simply characterized by combining heave and
pitch oscillations. Anderson et al. (1998) and Triantafyllou et al. (2000) conducted
extensive parametric particle image velocimetry (PIV) measurements on the factors
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that influence the thrust-producibility of flapping wings. They found that the
dimensionless Strouhal number, St, can be principally used to describe the condition
for thrust production. This parameter, defined in (1.1) is also appropriate to define a
characteristic wake pattern. The term wake is used here to describe the location of
the measurement rather than a drag indicative velocity scenario.

St =
f A

U∞
, (1.1)

where f is equal to the frequency of oscillation (heave frequency is equal to pitch
frequency), A represents the maximum excursion of the aerofoil trailing-edge
(= double-amplitude of oscillation, = c) and U∞ represents the free-stream velocity.
According to Anderson (1996), the phase relationship between heave and pitch
oscillations, as well as the maximum angle of attack of the aerofoil in pitch oscillations
will also influence the ability of an oscillating aerofoil to produce thrust optimally.
Studies such as this have significantly enhanced our understanding of the mechanics
behind flapping-foil thrust production. Yet thrust production is not the only result of
flapping wings.

On the other hand, a study of active vorticity control through the use of a flapping
aerofoil upstream of a stationary cylinder or aerofoil, resulted in the establishment
of the Katzmayr effect (Katzmayr 1922). The flapping aerofoil can exert a degree of
control on the boundary layer and flow characteristics of the downstream aerofoil or
cylinder through phase locking of the vorticity-shedding process with the motion of
the upstream forcing of the oscillating aerofoil. The basis for enhancing performance
through unsteady flow control is the formation of large-scale vortices through body
motion, the sensing and manipulation of the vortices as they move down the body, and
the efficient repositioning through trailing-edge motions. In this case, the manipulation
of the wake or boundary layer through adaptive repositioning is a consequence of
the neighbouring flapping motion as well.

Cheng & Murillo (1984) first raised the concern that many of the predictions of
thrust forces and thrust efficiencies were overestimated. They were also concerned that
any representations of the wake structure were erroneous. In both cases, these concerns
were due to the absence of wingtip effects in the investigations. For example, the
work by Anderson et al. (1998) is one of the most comprehensive studies of flapping
aerofoils. It investigates the interaction between the flow physics, wake structure and
thrust producibility. However, the study is based on two-dimensional-aerofoils. While
it does provide a baseline for comparison with the three-dimensional-aerofoil studies
undertaken here, it does not account for the interaction of bound wingtip vorticity
with leading- and trailing-edge vortices. In nature, as in engineering applications,
bodies have finite aspect ratios and are three-dimensional in nature. While increasing
efforts are being made to determine the effects of wing three-dimensionality on thrust
and wake characteristics, using numerical techniques (Jones et al. 2002), generally,
there are few experimental data.

Preliminary experiments by von Ellenrieder, Parker & Soria (2003) suggest that
wingtip vortices on a three-dimensional wing would reduce the efficiency values that
have been reported. They show using flow visualizations, that the coupled interaction
between wingtip vortices and vorticity shed from the leading- and trailing-edge of a
flapping wing, creates a flow topology significantly different to the conventional reverse
Kármán vortex street. From Parker et al. (2002a), the typical flow pattern behind a
two-dimensional-aerofoil is illustrated in figure 1. On the other hand, based on the
results of von Ellenrieder et al. (2003), a model of the flow skeleton behind a finite-span
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Figure 1. Dye flow visualization of the flow behind a wing with NACA0030 profile and
aspect ratio =3. For the condition shown, St= 0.35, θ0 = 10◦ and ψ = 90◦.
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Figure 2. Proposed three-dimensional structure of the vortex skeleton behind a wing with
NACA0030 profile and aspect ratio =3. For the condition shown, St= 0.35, θ0 = 10◦ and
ψ = 90◦. Flow is from right to left.

aerofoil is presented in figure 2. It can be seen that the flow topology is inherently more
complex for the three-dimensional case. According to Bishop & Hassan (1963), there is
a direct relationship between flow topology, body kinematics and the forces imparted
to the flow. Therefore, the observed variation in the flow topology is expected to signi-
ficantly modify the dynamics of interaction between vortical structures that constitute
the flow, and ultimately also the thrust producibility. Hence, the need for further work.

Moreover, parametric visualization experiments by Parker et al. (2003, 2002b) have
identified the separate effects of oscillation frequency, amplitude and phase angle
between heaving and pitching oscillations, on the structure of the flow behind a
finite-span aerofoil with aspect ratio 3. Overall, the results corroborate many features
of the model in figure 2. Numerical studies by Guglielmini & Blondeaux (2004) and
Triantafyllou, Techert & Hover (2004), have predicted similar flow patterns for the
same flow conditions. Buchholz & Smits (2005) observed a wake dividing into two
chains of vortical structures with an appearance very different from that observed by
von Ellenrieder et al. (2003). They also mentioned that this was observed by Blondeaux
et al. (2005a). However, in the case of Buchholz & Smits (2005), the flow behind a
low-aspect-ratio flat plate, which undergoes a purely pitching motion was investigated.
The results of their work cannot be directly compared to previous pitching/heaving
aerofoil studies as the geometry and flow conditions of their experiment are
different. The pitching plate oscillates about its leading-edge and behaves more like a
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trailing-edge flap as it is mounted in the wake of a stationary aerofoil. Furthermore,
on closer investigation of the work of Blondeaux et al. (2005a), no two chains of
vortical structures were originally reported. The comments of Buchholz & Smits
(2005) are therefore potentially misleading.

The aim of the current paper is not to reproduce the three-dimensional structure
proposed in von Ellenrieder et al. (2003), but to present quantitative measurements
performed at a specific test condition. The methodology adopted has also been
tested in Parker et al. (2005). We focus on the quantitative description of the
evolution of spanwise vorticity in the plane of symmetry. Based on the flow visualiz-
ations of von Ellenrieder et al. (2003) this was a logical choice. The limitations asso-
ciated with qualitative flow visualizations of unsteady flow structures are discussed by
Hama (1962). In order to test the interpretations from the qualitative measurements, as
well as provide quantitative data for comparison with numerical results, measurements
of the flow behind a finite-span flapping wing are required. For this purpose, Non-
intrusive planar PIV measurements are conducted in the plane of symmetry of a wing
with a finite span. The parameters selected for experimentation allow comparison
with previous studies by Anderson et al. (1998) and von Ellenrieder et al. (2003).

The test condition corresponds to the optimal thrust-producing case for an infinite-
span aerofoil, as measured by Anderson et al. (1998). Parker et al. (2002a ,b, 2003)
parametrically investigated the effect of this test condition and others, on a finite-span
aerofoil and found significant qualitative differences for all cases. Moreover, Parker
et al. (2004, 2005) found that the present test condition produced some unique features
in the resulting wake-flow, particularly along the wing midspan, where measurements
are now conducted. Using a method similar to Hussain & Reynolds (1970), the
measured oscillatory flow is decomposed into coherent and incoherent components.
This allows the processes responsible for Reynolds stresses, to be decomposed into
coherent and incoherent parts. The aim of this study is to quantitatively describe
some evolutionary characteristics of this highly complex flow.

2. Experimental technique and apparatus
2.1. Apparatus

The experiments were conducted in a water tunnel at the Laboratory for Turbulence
Research for Aerospace & Combustion (LTRAC). The tunnel has a 5 m long test
section, with 500 mm × 500 mm cross-section. The recirculating water tunnel is capable
of delivering speeds up to 1m s−1. The experimental set-up is shown in figure 3.

The turbulence intensity in the core region of the test section is less than 0.35 %.
The turbulence intensity here, is calculated from the fluctuating components of the
in-plane velocities, u and v. The variation of the turbulence intensity across the tunnel
width is shown in figure 4(a). The mean velocity profile across the width of the test
section is shown in figure 4(b). The mean profile is measured using PIV and 1000
instantaneous image pairs. From figure 4(b), the mean profile in the core region of
the test section is stable, with minimal variation. Experimental measurements are
acquired in this region. The profile is similar to a wall-bounded flow in a channel
(Pope 2000). The mean tunnel centreline velocity is 30 mms−1, corresponding to a
Reynolds number, based on the tunnel width, of 15 000, at 23 ◦C.

A NACA0030 aerofoil, with chord, c = 20 mm and aspect ratio, AR = b/c = 3 is
suspended vertically above the test section. The aerofoil assembly can be seen in
figure 3. The aerofoil performs angular (pitch) and lateral (heave) oscillations in the
y-direction, using stepper motors. The aerofoil heaves in the y-direction and pitch
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Figure 3. Schematic of the experimental apparatus: (a) test section, (b) laser, (c) CCD camera,
(d) 45◦ mirror, (e) light sheet, (f ) heaving stepper motor with Scotch yoke, (g) pitch stepper
motor.
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Figure 4. (a) Non-dimensional turbulence intensity in the test section at 30 mm s−1. (b) Mean
streamwise non-dimensional velocity profile across the test section at 30 mm s−1. U∞ is the
free-stream velocity and W1/2 is the test section half-width.

oscillates about the quarter-chord, c/4 location. The aerofoil is vertically supported
at the quarter-chord position which corresponds approximately to the aerodynamic
centre for this symmetrical aerofoil. The heave-stepper motor performs the oscillations
by virtue of a Scotch yoke. The Scotch yoke drives a platform mounted on a linear
bearing. A second stepper motor is mounted on this platform and drives the aerofoil
directly. The stepper motor motions can be accurately controlled using an in-house
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Figure 5. Schematic of the aerofoil motion in the reference frame (X, Y,Z) of the
free-stream velocity, U∞, and the reference frame (x, y, z) of the aerofoil.

developed motion control program, which interfaces with a Motion Architect AT6400
multi-axis motor controller.

The controller controls each Rorze stepper motor driver. The control program
allows different motion parameters, such as frequency of oscillation, f , maximum pitch
oscillation amplitude, θ0 and phase angle between heaving and pitching oscillations,
ψ , to be independently varied. Thereby, allowing for various motion profiles to be
reproduced by the aerofoil. The oscillating mechanism and aerofoil was appropriately
modified to avoid undesirable excitation of the resonant frequency by the forcing
frequency of oscillation. This could create or amplify any disturbances in the flow
and modify the true structure under investigation. The natural frequency of the system
is 17.13 Hz while the forcing frequency of the aerofoil is 0.5 Hz.

The entire oscillating mechanism is mounted on a railing system above the test
section, allowing the aerofoil set-up to be moved to different free-stream locations in
the test section. Once the CCD camera and laser sheet are appropriately positioned
to image the desired area in the measured plane, only the aerofoil need be adjusted,
relative to the fixed measurement plane, to measure other spanwise locations. This
set-up is conducive to repeatable measurements.

The heave, h(t), and pitch, θ(t), oscillations have a sinusoidal profile according to,

h(t) = h0 cos(ωt), (2.1)

θ(t) = θ0 cos(ωt + ψ), (2.2)

where, h0 = c/2 and ω = 2πf (equal for heave and pitch oscillations). h0 and θ0 are
the maximum excursions of the trailing-edge of the aerofoil. Figure 5 shows the
aerofoil motion parameters in a Cartesian reference frame. The oscillation profiles
in (2.1) and (2.2), are based on past studies on the effect of various motion profiles,
on thrust producibility and vortex pattern formation. Koochesfahani (1989) used
flow visualizations and found that a sinusoidal variation produced the clearest
reverse Kármán vortex street associated with thrust production with maximum
efficiency. Anderson (1996) found similar results, based on two-dimensional aerofoil
measurements, later corroborated by Hover, Haugsdal & Triantafyllou (2003). In the
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Parameter Quantity

c 20mm
AR 3
St 0.35
Rec 600
θ0 5◦

h0 0.5c
ψ 90◦

εθ 0.05◦

εh 0.003125c
εzs

0.00127c

Table 1. Experimental set-up parameters.

flow visualizations of von Ellenrieder et al. (2003), the motion profile in (2.1) and
(2.2) produced the flow structure shown in figure 2.

It is important for the aerofoil to follow the planned trajectory accurately, without
any deviations caused by jitter. If the aerofoil is allowed to stray from the design path,
the resulting flow would not be representative of the input forcing motion. In order
to ensure accurate and repeatable motion of the aerofoil, wheel-potentiometers were
modified to fit in-line with the drive axes of the stepper motors. Thus, a continuous
measure of the output motion of the aerofoil is available. Optical sensors are placed
at h = 0, h = h0 and θ = θ0 positions. Whilst providing a means of checking the
frequency, f and phase ψ , as measured by the potentiometers, the sensors provide a
5V trigger signal used for PIV image acquisition. To check for jitter, instantaneous
images are acquired at a fixed aerofoil pitch and heave location. Groups of 4, 8, 16
and 64 images were averaged and the jitter in the resulting image was measured in
pixels. The measured error in the pitch and heave oscillation is εθ and εh, respectively,
is given in table 1.

2.2. PIV image acquisition

In order to quantitatively analyse the flow, digital particle image velocimetry is used.
PIV measurements are conducted in the near-wake region of the aerofoil. The wing is
fully submerged and measurements are conducted in the plane of symmetry (midspan)
of the wing. A region 4c in the transverse direction (y) by 3c in the streamwise direction
(x) is captured. Based on the flow visualizations of von Ellenrieder et al. (2003), this
area is large enough to capture the large-scale structure of the flow resulting from
one complete flapping oscillation of the aerofoil.

Prior to the PIV acquisition, the flow was uniformly seeded with Potters hollow
glass beads, nominally 11 µm in diameter and with specific gravity of 1.1. The particles
are premixed in a beaker, into a paste, using a surfactant and water from the test
section. The mixture is placed on a magnetic stirrer and the larger particles, that
dissociate from the mixture, are separated and discarded. In order to further facilitate
mixing prior to measurements in the test section, the tunnel speed is rapidly increased
for several minutes after the particles have been added. Thereafter, the tunnel flow
speed is reduced to the test speed. The water is allowed to settle in approximately
10 min, before commencing experiments.

As illustrated in figure 3, a Pixelfly CCD camera, with array size 1280 pixels ×
1024 pixels, is horizontally mounted below the test section and the flow above is
observed through a large rectangular mirror mounted at 45◦ to the line of sight. The
camera is fitted with a 105 mm Micro Nikkor Nikon lens set at an aperture of f 2.8. A
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Figure 6. Heave and pitch motion profile for ψ =90◦. The solid line represents the path of
the quarter-chord point, the letters (a–h) indicate the labels in all visualization figures and the
numbers indicate the aerofoil phase location according to table 3.

Parameter Quantity

Magnification 0.06
dt 7.0ms

Grid spacing 0.05c
IW0 0.1c
IW1 0.05c

MVR 0.25
MVC 1.3
d.o.f. 0.35c

Table 2. PIV image acquisition and analysis parameters.

reproduction ratio of 5 was used for all experiments. With these settings, the estimated
aberration-free depth of field, d.o.f. = 7 mm and the diffraction limited particle image
size was 7.7 µm. The camera arrangement is mounted on a railing system to allow
easy x, y, z-translation to different locations in the flow. The camera captures the
motion of the neutrally buoyant fluorescent particles that trace the motion of the
flow. Using a dual-cavity New Wave Nd:YAG laser, two 532 nm laser beams are fired
at 32 mJ each. Using the necessary collimating lens optics, a 3 mm thick horizontal
light sheet is created in the midspan region of the aerofoil.

A real-time Linux program controls the entire PIV acquisition process. The image
acquisition is synchronized with the laser firing. The acquisition process is triggered
by the optical sensors tracking the motion of the aerofoil. Image pairs are acquired
by the camera every 250 ms and the time between laser firing, dt = 7 ms. The size of
the largest measured displacement is the maximum velocity ratio (MVR) and is at
least 25 % of the sampling window used for the PIV analysis. The exposure time for
the camera is 220 µm.

The set-up employed here permits image acquisitions that are phase locked with the
motion of the aerofoil. Phase-averaged measurements are acquired at eight equally
spaced locations along one heave cycle (figure 6). The period of one heave cycle is
2 s. At each phase, 500 instantaneous PIV image pairs are acquired.

The acquired double exposed image pairs are analyzed using a adaptive multi-grid
cross-correlation algorithm (MCCDPIV) (Soria 1998). Based on the number of image
pairs acquired and the measured standard deviation in the resolved velocities, a 1 %
random error is estimated based on a statistical confidence of 99 %. The acquired
images are analysed using the parameters given in table 2.

2.3. Vorticity calculation

The out-of-plane vorticity, ωz, was calculated from the MCCDPIV velocity field
measurements using a local least-squares fit procedure to the velocity field, followed
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by analytic differentiation (Soria 1996) using the relationship

ωz = ∂v/∂x − ∂u/∂y. (2.3)

A thirteen-point two-dimensional local fit to the data was used. The additional
bias and random error introduced by this approximation into the vorticity value have
been investigated (Fouras & Soria 1998). The accuracy of the ωz field measurement
depends primarily on the spatial sampling distance between each velocity data point
and the accuracy of the resolved velocity vector field. The ratio of the biased vorticity
error, ωbias, to the exact value of the vorticity, ωexact, shown in (2.4) can be derived
using the methodology outlined in Fouras & Soria (1998) and can be used to estimate
the biased vorticity error.

ωbias

ωexact

= −0.7478

(
∆

L

)1.96

. (2.4)

This relationship shows that the bias error is related to the sampling separation
between velocity measurements, where L can be thought of as being a characteristic
length scale of the vorticity distribution and ∆ is the distance between adjacent
velocity measurements.

The ratio of random error in the MCCDPIV velocity measurement compared to
ωz is denoted by λ0 and can be calculated using the relationship derived in Fouras &
Soria (1998) shown in (2.5). This relation is specific to the thirteen-point fitting
technique used to calculate the vorticity.

λ0 =

√
1

5

(
L

∆

)
. (2.5)

For a vorticity distribution with a characteristic length scale of 16∆, the bias error
is estimated as −0.3 % and the random error is estimated as ±2.0 % at the 99 %
confidence level, whereas for a vorticity distribution with a characteristic length scale
of 4∆, the bias error is estimated as −3.9 % and the random error is estimated as
±1.0 % at the 99 % confidence level.

3. Non-dimensionalization and scaling
The velocity and spatial coordinates are non-dimensionalized by the uniform con-

vection velocity, U∞ and the chord, c, respectively. The total extent of travel of the
aerofoil trailing-edge is 1c. Therefore, it is considered that the spatial extent of any
wake structure will scale with this length in the near-body region where the measure-
ments are conducted. The aerofoil is forced according to (2.1) and (2.2). The vorticity
is non-dimensionalized by the maximum rate of pitch oscillation, θ̇0 = 0.274 rad s−1.

The mean profile in the aerofoil wake will indicate a velocity deficit or addition
scenario. For the mean profiles, the velocity is non-dimensionalized by the maximum
centreline velocity, Um = (Uc − U∞), where Uc is the mean centreline velocity of the
jet. The transverse location, y, is non-dimensionalized by the wake half-width similar
to Tennekes & Lumley (1972).

In some cases, streamlines are used to highlight salient features in the flow. The
streamlines are confined to the two-dimensional projection of the flow in (x, y)-space
and are calculated from the 〈u〉 and 〈v〉 phase-averaged components of velocity, integ-
rated along the free-stream direction. Streamlines are not Galilean invariant because
they depend on the velocity of the observer. According to (Chong, Perry & Cantwell
1990), the complexity arises when integrated particle paths cross instantaneous
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Figure 7. Dye flow visualization behind a three-dimensional flapping wing at St= 0.35,
Re= 600. Flow is from right to left.

Phase Figure ψ h(t) θ (t)
φ label (deg.) (mm) (deg.)

1 a 180 −10 0
2 b 225 −7.07 +3.5
3 c 270 0 +5.0
4 d 315 +7.07 +3.5
5 e 0 +10 0
6 f 45 +7.07 −3.5
7 g 90 0 −5.0
8 h 135 −7.07 −3.5

Table 3. Heave and pitch locations for each phase at which PIV measurements are acquired.

streamlines, creating ambiguous structures. Nonetheless, their purpose here is to
show the nature of the in-plane vector field flow in relation to closed orbits or spirals.
The convection velocity, U∞ is removed in order to obtain the frame of reference of
an observer moving with the fluid.

4. Results
Figure 7 shows a typical flow visualization behind a finite-span flapping aerofoil

from von Ellenrieder et al. (2003). From figure 7, it can be seen that the flow topology
is highly complex, particularly along the plane of symmetry, marked by PP in the
planform view of the aerofoil. Therefore, PIV measurements are conducted in this
(x, y)-plane. The measurement domain is highlighted by region S in the wingtip view.

Table 3 gives the eight heave and pitch locations at which instantaneous images
of the flow are acquired. Phase-averaged quantities are presented in figures 11 to 25
for each of the eight phases labelled alphabetically according to table 3. The figures
for each of the phase locations have been labelled as indicated. The spatial variation
in the (x, y)-plane, for each parameter, is represented by iso-contours in region S.
The temporal variation is captured by the measurement at each phase. Together, the
spatio-temporal variation in the flow is investigated.
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Unless otherwise stated, flow is from left to right for all figures. The aerofoil heaves
vertically, between −h0 and +h0, which in the figures presented, are indicated by
y/c = 1 and y/c = 2, respectively. In all figures, a cartoon of the aerofoil, to scale,
is inserted at the left-hand side of the image to provide a sense of the flow field
relative to the orientation of the aerofoil. Using the resolved velocity vector fields,
the vorticity and Reynolds stresses are calculated. Positive spanwise vorticity, +ωx , is
counterclockwise (CCW) and out-of-the-page.

The test condition for the results correspond to Rec =600, θ0 = 5◦, ψ = 90◦ and
St= 0.35. The free-stream velocity U∞ = 30 mm s−1. The maximum aerofoil heave
oscillation velocity ḣ0 = 31.42 mm s−1. The aerofoil double amplitude of oscillation
2h0 = c. The aerofoil chord length, c =20 mm.

5. Discussion of results
5.1. Coherent and incoherent contributions to Reynolds stress

The Reynolds number of the flow is low and it is expected that the Reynolds stress
in the initial stages of development of the wake is predominantly due to the time-
dependent nature of the reverse Kármán vortex street. While the Reynolds regime
here does not produce a chaotic velocity and pressure field as would higher Reynolds
numbers, the flow field is made up of some incoherent components from near-wake
turbulence and instabilities in the separated shear layer. In the present case of forcing
the aerofoil to oscillate at a prescribed frequency, the contribution of the incoherent
random turbulence is expected to be negligible.

To examine more closely the different contributions to Reynolds stresses, the phase-
averaging procedure suggested by Hussain & Reynolds (1970), Reynolds & Hussain
(1972) and Cantwell & Coles (1983) is applied. In this case, the forced oscillation of
the wing introduces a wave into the flow. Using the optical sensors in our experimental
set-up, images of the flow are captured at discrete phase locations in the trajectory of
the aerofoil. The flow can be decomposed into a mean and a hierarchy of coherent
and incoherent motions of various length scales.

Hussain (1986) refers to the separation from instantaneous flow fields into coherent
and incoherent parts, as eduction. Here, phase average denotes phase-aligned ensemble
average. This is an average of successive structures at the same phase or age in the
forced oscillation of the aerofoil. Thus, the phase average of structures of the same
mode and parameter size is the coherent structure, and the departure of each instant-
aneous realization from the phase average denotes incoherent turbulence. By mode is
meant the physical configuration (e.g. toroidal, helical, hairpin, etc.) of the structure. By
parameter size is meant the shape, size, strength and convection velocity of a structure.

Through selective sampling, the organized wave motion can be separated from
the background field of finite turbulent fluctuations. In the presence of such forced
disturbances, in general, any fluctuating quantity f (x, t) can be triple decomposed.
The flow variables f (x, t) are made up of three components: a global mean component
f (x), a periodic mean component f̃ (x, t) and a residual random component f ′(x, t),
such that

f (x, t) = f (x) + f̃ (x, t) + f ′(x, t), (5.1)

f̃ = 〈f 〉 − f . (5.2)

The periodic mean represents the contribution of the organized wave (forcing
function) to each instantaneous measurement. When added to the global mean



Forced oscillatory flow past a finite-span wing at low Reynolds number 339

1.4 2.2 3.0 4.3 5.2
x/c =

4

3

2

1

0

–1
0 1 2 3 4 5 6

y
–c

x/c

Figure 8. Mean velocity vector field measured behind a finite-span flapping aerofoil at
θ0 = 5◦, ψ = 90◦, St = 0.35.

component the coherent component of the measured quantity is calculated. This
quantity is defined also as the ensemble or phase-averaged component and is denoted
by 〈f 〉 in (5.2). In the present study, 500 instantaneous PIV images acquired at fixed
locations of the wing motion-trajectory are used to calculate each phase average.
Eight phases are used to track the evolution of the reverse Kármán vortex street, that
is associated with thrust-producing flapping wings. On the other hand, an average of
the coherent component, over all the different phases, will erase the phase information
and result in the global mean component. The contribution of the random component
or turbulence is represented by f ′(x, t). The periodic and random components account
for all fluctuations about the global mean.

Of particular interest is the contribution of the periodic mean f̃ and the global
mean f components to the phase-acquired measurements, 〈f 〉 of the forced wing
oscillations. To this end, various periodic mean quantities are presented in the follow-
ing sections and denoted by f̃ , while the phase- or ensemble-averaged components are
denoted by 〈f 〉. The random incoherent turbulence, accounts for all other fluctuations,
but is omitted in this study.

Using the triple decomposition approach, the Reynolds stress can be split into a
coherent and an incoherent part. The random component in (5.1) accounts for all
fluctuations, u′2, v′2 and u′v′. The coherent component of the Reynolds stress, taken
over 500 image pairs per phase is denoted by 〈u2〉, 〈v2〉 and 〈uv〉. The periodic mean
component is calculated from ũ2 = 〈u2〉 − u′2, ṽ2 = 〈v2〉 − v′2 and ũṽ = 〈uv〉 − u′v′ in
accordance with Reynolds & Hussain (1972).

5.2. Time-mean flow characteristics

The properties of the mean flow field can be determined by calculating f (x) in (5.1).
The non-dimensionalized in-plane vector field, U/U∞ and V/U∞ is shown in figure 8
with mean profiles highlighted at x/c = {1.4, 2.2, 3.0, 4.3, 5.2}. These locations were
randomly selected to look at the variation in the free-stream direction. The mean
velocity, U∞, has been subtracted from the mean streamwise velocity component so
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Figure 9. Average jet-velocity profiles as a function of jet half-width, δ1/2 at various
downstream stations in the flow field behind a three-dimensional flapping foil.

that the vector field represents the velocity addition. Every second vector is shown and
the vector size has been abnormally increased in order to make the profiles obvious.

In all x/c cases, the mean in-plane velocity profile in figure 8 has a jet-like profile in
the axial direction. At x/c = 1.4, the profile exhibits some asymmetry about the mean
heave axis at y/c =1.5. In the case of x/c =2.2, the profile is symmetrical about the
mean heave-oscillation axis at y/c = 1.5. For a jet flow scenario, a uniform velocity
profile similar to a round or plane jet was expected, as shown in Pope (2000). At
x/c = 2.2, the mean axial velocity profile exhibits a double hump symmetric about
the mean heave axis. The double hump is generally synonymous with swirling flows
(Lozano, Kostas & Soria 1998). It is thought that the two large-scale counter-rotating
vortical structures measured on either side of h = 0, in the phase measurements in
figure 19 are responsible for the modification of the mean profile. Coupled with
the interaction of the wingtip vortices, a swirl-like component could be introduced.
However, the mean profile returns to a regular shape at x/c = 3.0, suggesting that if
the vortical structures are responsible for this modification, they are spatially biased
to the region x/c = 2.2.

To investigate the mean velocity profiles more closely, figure 9 shows the mean axial
velocity minus the free-stream velocity, U∞, non-dimensionalized by the maximum
velocity addition along the centreline, Um, against the jet half-width, δ1/2. The cases of
x/c = {1.4, 2.2, 3.0} are shown. Every second vector is shown. Since the measurement
are close to the aerofoil, the jet has not had time to develop fully. Therefore, the
profiles are not expected to be self-similar. According to Pope (2000), the development
length in round jets is nominally from 30 jet diameters. The velocity addition in the
wake region is indicative of net thrust production. Although ‘wake’ would normally
define a region of velocity deficit, here it will be used to describe the region of the flow
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behind the aerofoil which clearly shows jet behaviour. At x/c = 1.4 and 3.0, the profile
has a conventional Gaussian distribution with jet half-width. This is most evident at
locations with x/c < 3, where the wake width appears small enough to be captured
in its entirety. Further downstream, the wake grows and the jet-like profile is not as
obvious. At x = 1.4c, the wake width is roughly 2c. The width here is measured from
the first occurrence of the free-stream velocity on either end of the profile. Further
downstream, at x/c = 4.3, a triple hump is just visible, but then the profile resembles
more of a wake at x/c = 5.2. In general, the mean profile exhibits some differences
from a conventional jet profile.

5.3. Velocity and vorticity fields

The spatio-temporal variation of the periodic mean in-plane velocity component,
(Ũ Ṽ ), is presented in figures 11 to 18. The velocities are represented by streamlines.
The streamlines overlap iso-contours of the spanwise vorticity. The corresponding
vector field is shown in figure 19.

The coherent streamline patterns indicate the presence of two large recirculating
structures occupying the bulk of the measured area. The counter-rotating structures
have their focus on either side of the mean heave axis, but are spatially non-
overlapping. The distribution and convection of the streamline patterns over one
cycle indicates that the flow is strongly influenced by the disturbances introduced by
the aerofoil motion. The shedding of spanwise vorticity into the flow appears to be
phase locked with the motion of the aerofoil.

In one cycle, two distinct structures formed by the streamlines, are observable. The
circulation of these structures are marked A and B in figure 13. The arrangement of
these large-scale structures form a counter-rotating pair about the mean oscillation
axis, h = 0. The dashed line in figure 13 indicates h =0. The foci created by the
streamlines overlap with the regions of intense counter-rotating spanwise vorticity.
Each region of intense vorticity is constituted by smaller regions of co-rotating
spanwise vorticity, which appear to merge constructively, to form the large-scale
vortical region. Overall, the arrangement resembles a reverse Kármán vortex street
with the peak spanwise vorticity 0.1θ̇ 0.

Each region of lumped vorticity is constituted of two smaller regions of vorticity
of similar sign and intensity. This can be seen more clearly in figure 19(c), where the
regions have been marked by A1, A2, B1 and B2. From the measurements, the magni-
tude of the free-stream velocity component is equivalent to the magnitude of the y

velocity component. Regions of intense vorticity correspond to regions of distinctive
rotational flow in figure 19. In general, the close proximity of regions of high oppositely
directed flow in the (x, y)-plane suggests the presence of large velocity gradients.
This is indicative of significant out-of-plane motion. Initially, close to the aerofoil,
the regions A1, A2, B1 and B2 start out as linked ring-like structures, but appear to
separate into distinct regions as they convect approximately 2c further downstream.

Based on the flow visualizations by von Ellenrieder et al. (2003), for the same test
conditions, a sequence of vortices according to (5.3) are shed in one oscillation cycle.

T1 → L1 → T2 → L2. (5.3)

From figure 11 and 19, four smaller structures populate the flow in one cycle. Two
pairs of co-rotating flow correspond to the sequence of vortices in (5.3). In figure 11,
at phase 1 (φ1), negative spanwise vorticity, −ωzc/θ̇ 0, appears at the entrance (left)
of the measurement area. From the Biot-Savart law, this vorticity would rotate CW.
Because the shift in the measurement area relative to the aerofoil, where vorticity
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Figure 10. Evolution of vorticity behind a three-dimensional flapping wing at St= 0.35.
The corresponding flow visualizations are shown on the right-hand side. The start of the
measurement domain, (region S in figure 7) is demarcated by the dashed vertical line.

would originate, the measured vorticity is mature (created from a previous event).
If any vorticity in the flow is assumed to convect approximately at U∞ and any
self-induction is considered small enough to ignore, then the measured negative
vorticity originated roughly 1 s earlier.
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Figure 11. Integrated (Ũ Ṽ ) streamline pattern of the periodic mean component of the flow
behind a finite flapping wing at θ0 = 5◦; ψ = 90◦; St = 0.35 and phase 1. Iso-contours of the
spanwise vorticity, ωz/θ̇0 overlie the streamline pattern.

3

2

1

0 1 2 3 4 5

y
–c

x/c

–0.100 –0.067 –0.033 0 0.033 0.067 0.100
b

Figure 12. As figure 11, but for phase 2.

This corresponds to the φ5 of the preceding cycle. When the aerofoil reaches +h0,
the relative tangential velocity of the flow creates CW rotating flow at φ5. On the
other hand, the aerofoil is expected to experience CCW flow when departing from
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Figure 13. As figure 11, but for phase 3.
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Figure 14. As figure 11, but for phase 4.

−h0 at φ1. Similarly, when the aerofoil reaches the extreme angles of attach at φ3
and φ7, the Kutta condition will enforce a separating-flow condition.

The measurements show that two spanwise regions of vorticity, of similar orienta-
tion, are shed in each half-cycle. Comparing the measurements to the sequence in
(5.3), each half-cycle creates a co-rotating pair of leading- and trailing-edge vortices.
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Figure 15. As figure 11, but for phase 5.
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Figure 16. As figure 11, but for phase 6.

The maximum heave velocity, ḣ0 =O(U∞). If it is assumed that all vortices formed at
the aerofoil convect at the same convection velocity in the x and y directions, simple
equations of motion can be used to determine the proximity of shed vorticity relative
to the centre of rotation of the aerofoil. This can be calculated for each phase.
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Figure 17. As figure 11, but for phase 7.
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Figure 18. As figure 11, but for phase 8.

Figure 10 is a sketch of the creation, orientation and transport of vortical structures
as a result of the tangential velocity of the flow relative to the motion of the aerofoil.
This interpretation of the flow is independent of the measurements. It is derived from
the kinematics of the aerofoil and expected fluid mechanical behaviour of the flow.
This interpretation is inferred from the relative tangential velocity of the flow near the
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Figure 19. In-plane velocity, (Ũ/U∞, Ṽ /U∞) vector field of the periodic mean component of
the flow behind a finite flapping wing at θ0 = 5◦; ψ = 90◦; St= 0.35. The vectors are shaded by
spanwise vorticity, ωz/θ̇0.

leading- or trailing-edge and the aerofoil motion. The proposed vortex street
sketch provides qualitative information of the spatial scale and direction of vorticity.
Some consideration of convection of the vortices due to self induction and the mean
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flow, is provided. The birth of vorticity at the leading- and trailing-edges are labelled
L and T , respectively. The sequence of letters on the left-hand side, corresponds to
the phase locations described in table 3. The dashed vertical line at 1.5c from the
aerofoil trailing edge marks the boundary and the start of the PIV measurement
domain.

Figure 10 shows that the flow is expected to be populated by pairs of co-rotating
vortices that shed in the sequence described by (5.3). This corresponds also to the
sequence observed in the flow visualizations. From the relative x and y tangential
velocities, the direction of roll-up of vorticity at the leading-edge, can be inferred.
This is shown in figure 10(a, e). When the aerofoil is orientated at the extreme pitch
angles, −θ0 and +θ0, in figures 10(c) and 10(g) respectively, the Kutta condition
imposes a flow-separation condition at the trailing edge, resulting in the formation of
T -vortices. The sequence of events that result in the flow pattern depicted in figure 10,
is similar to the two-dimensional PIV results of Anderson (1996). The evolution of
vorticity depicted in figure 10 is similar to results by others, such as Guglielmini &
Blondeaux (2004) and Triantafyllou et al. (2004) at similar experimental conditions.
In the case of Guglielmini & Blondeaux (2004), the numerical simulation is based
on a two-dimensional aerofoil only. In this case, Guglielmini & Blondeaux (2004)
comment that the L-vortex is a strong dynamic stall vortex which wraps around a
weaker T -vortex of similar sign for the case of 2A/c � 1, thus, setting up a Kármán
vortex street in the mean flow with the second vortex pair of opposite sign.

5.4. Reynolds stresses

Figures 23 to 25 show the phase-averaged components of the Reynolds stresses for
the aerofoil. In figure 20(c), the focal region of each coherent structure formed by
the streamlines, is dominated by very strong positive longitudinal stresses in excess
of 0.03U∞

2. Each region of high longitudinal stress is constituted by a smaller pair
that corresponds to the centroids of regions of rotational flow in figure 19. These
regions correspond to areas of both CW and CCW intense vorticity, at all phases, in
figure 19.

The periodic mean stress components are shown in figures 20 to 22. In general, at all
phases, compared to the periodic mean components, the phase-averaged components
of the longitudinal Reynolds stress are greater in magnitude. Since the phase-averaged
component includes also the contribution from the mean flow, according to (5.2), this
suggests that the mean flow acts to reduce or dampen the mean longitudinal stress
levels in the flow field. The maximum phase-averaged stresses 〈u2〉 ∼ 7ũ2. In both
cases, the stress field is phase correlated.

In general, both phase-averaged and periodic mean longitudinal stresses exhibit the
same spatial distributions, and exhibit similar morphological characteristics between
each aerofoil phase. By overlapping ũ2 with 〈Ũ Ṽ 〉 streamlines, regions of high longi-
tudinal stress can be seen overlapping the foci of coherent structures in the flow.

In the case of the periodic mean component of the transverse Reynolds stress in
figure 21, there is much less spatial variation from one phase to the next. A region of
high ṽ2 remains in a fixed location close to the trailing-edge of the aerofoil. On the
other hand, the phase-averaged transverse Reynolds stress distributions in figure 24
appear phase correlated but at peak values four times smaller than the corresponding
periodic mean values. When compared to the longitudinal stresses, both periodic and
phase-averaged components show that the dominant mechanism in the flow is the
transverse Reynolds stress. The transverse direction, y, corresponds to the direction
of the heave oscillations of the aerofoil.
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Figure 20. Iso-contours of longitudinal Reynolds stress – (ũ2/U∞
2) overlay with (Ũ Ṽ )

streamline pattern of the flow behind a finite flapping wing at θ0 = 5◦; ψ = 90◦; St= 0.35.

In the case of the shear stress component in figures 25 and 22, the magnitude
of the peak phase-averaged component equals the magnitude of the peak periodic
mean component. The peak shear stress for both components is roughly 0.4U∞

2. The
spatial distribution and temporal variation for the phase-averaged and periodic mean
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Figure 21. Iso-contours of transverse Reynolds stress – (ṽ2/U 2
∞) of the flow behind a finite

flapping wing at θ0 = 5◦; ψ = 90◦; St= 0.35.

components exhibit the same morphological characteristics. Thus, in the case of the
shear stress components, the mean flow has little influence. When the shear stress
contours in figure 22 are superimposed onto 〈Ũ Ṽ 〉 streamlines, possible correlation
between coherent structures in the flow and high measured shear stress, can be
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Figure 22. Iso-contours of the in-plane shear Reynolds stress – (ũṽ/U 2
∞) overlay with 〈Ũ Ṽ 〉

integrated streamline pattern of the flow behind a finite flapping wing at θ0 = 5◦; ψ = 90◦;
St = 0.35.

identified. Figure 22 suggests that there is no clear correlation between coherent foci
or in-plane Reynolds shear stress. The shear stress is greater than the peak normal
stresses, based on the phase-averaged measurement, by a factor of 2. In the case of the
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Figure 23. Iso-contours of the phase-averaged longitudinal Reynolds stress – (〈u2〉/U 2
∞) of

the flow behind a finite flapping wing at θ0 = 5◦; ψ = 90◦; St= 0.35.

periodic mean measurement, the peak shear stress is as large as the peak transverse
stress component.

Overall, the stress fields show the existence of separate lumped regions
corresponding to the four separate regions of vorticity in one oscillation cycle. The
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Figure 24. Iso-contours of the phase-averaged transverse Reynolds stress – (〈v2〉/U 2
∞) of the

flow behind a finite flapping wing at θ0 = 5◦; ψ = 90◦; St= 0.35.

spanwise vortex pairing that is observed in the initial stages of development of the
flow corresponds to regions of high Reynolds stresses. The data show that the phase-
averaged flow is dominated by the periodic mean component of the organized wave
and that the mean flow has little influence on Reynolds stresses in the flow. The
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Figure 25. Iso-contours of the phase-averaged shear Reynolds stress – (〈uv〉/U 2
∞) of the flow

behind a finite flapping wing at θ0 = 5◦; ψ =90◦; St= 0.35.

apparent dominance of the anisotropic component of the two-dimensional Reynolds
stress tensor suggests that this is a major mechanism for dissipation of turbulent
kinetic energy from the aerofoil motion.
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6. Concluding remarks
The flow visualization images show pairs of alternating leading- and trailing-edge

vortices. The measurements show that each vortex pair is co-rotating. This results in
constructive merging of leading- and trailing-edge vortices to form stronger large-scale
regions of spanwise vorticity.

The numerical findings in Blondeaux et al. (2005a) show differences in detail
between the wake model inferred from the flow visualizations of von Ellenrieder
et al. (2003) and their isosurface vortex tubes. The gross appearances of the wakes
are qualitatively similar. As mentioned by Blondeaux et al. (2005a), the use of
isosurface criteria in trying to establish the wake structure has the limitation that
it cannot avoid losing the details of the vortex structures in those regions where
vorticity is large. Thus, while several isosurface criteria were tried by Blondeaux
et al. (2005a) (vorticity, pressure minima and the complex eigenvalues of the velocity
gradient tensor), not all parts of the vortex structure could be visualized. This is
especially apparent in regions of strong vortex interaction and reconnection. Dong
et al. (2005) presented the results of a numerical study of an oscillating wing. In
comparison with the wing used in von Ellenrieder et al. (2003) and Blondeaux et al.
(2005a), the aerofoil cross-section used by Dong et al. (2005) was much thinner (12 %
thickness), was operated at almost twice the Strouhal number and had a rounded
trailing edge. Thus, the findings of Dong et al. (2005) can be expected to differ
somewhat. Dong et al. (2005) reported that the occurrence of two chains of vortical
structures in the wake is strongly dependent upon the aspect ratio of the wing. For
a Strouhal number of 0.6 and lower, and wing aspect ratios of 1.27 and 2.55, a
wake characterized by two chains of vortical structures is reported. However, for
aspect ratios of 5.09 and ∞ (two-dimensional), a single wake structure is observed. As
remarked in later sections of the Dong et al. (2005) paper, the structure of the wake
is qualitatively similar to that observed in the experiments of von Ellenrieder et al.
(2003).

The spatio-temporal variation of vorticity in the flow field show that the shedding
process is phase locked with the forced motion of the aerofoil. The flow field is popula-
ted by structures of various length scales, in the plane of symmetry. The evolution of
these structures, as well as the interaction of structures in the flow field, is indicative
of the complex three-dimensional nature of this flow. The flow is characterized by
a pair of coherent structures of positive and negative vorticity which shed in each
oscillation cycle. To characterize the morphological aspects of the flow adequately,
more velocity and spatial information is required.

The dominant mechanism for the transfer of momentum from the flapping aerofoil,
based on the midspan measurements, appears to be the transverse Reynolds stress
component. This acts in the direction of flapping. The apparent dominance of the
wave component of the forced flapping motion, in the Reynolds stresses, indicate
qualitatively, that the large-scale disturbances introduced by the sinusoidal motions
are primarily responsible for thrust production and the flow character. Aerofoil
kinematics drive, primarily, the morphological characteristics of the flow.
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